TPACK: Intro and In-Depth

Here are two takes on TPACK: an intro/overview video from Common Sense Media, the one we watched as a group (but placed here in case you'd like to view it again) and, below, a more in-depth explanation of TPACK by one of its founders. 

Here's a brief, engaging and very accessible intro to TPACK, courtesy of Common Sense Media.


Watch, listen and learn about the TPACK model in this 5-minute video


You're invited to read "TPACK Explained" below, by Dr. Matthew J. Koehler, one of the "framers" of TPACK along with Dr. Punya Mishra, both mentioned in the video you just watched. 

This is a more "academic" explanation of TPACK that will both recap the concepts from the intro video, and provide additional details and explanation about them. As interested, you may want to take a moment to read through this explanation, expanding and solidifying your understanding of the seven components of TPACK and the TPACK model as you do. 


TPACK Explained

Technological Pedagogical Content Knowledge (TPACK) attempts to identify the nature of knowledge required by teachers for technology integration in their teaching, while addressing the complex, multifaceted and situated nature of teacher knowledge. The TPACK framework extends Shulman’s idea of Pedagogical Content Knowledge.

The Seven Components of TPACK


TPACK Image (rights free). 

At the heart of the TPACK framework, is the complex interplay of three primary forms of knowledge: Content (CK), Pedagogy (PK), and Technology (TK). The TPACK approach goes beyond seeing these three knowledge bases in isolation. The TPACK framework goes further by emphasizing the kinds of knowledge that lie at the intersections between three primary forms: Pedagogical Content Knowledge (PCK), Technological Content Knowledge (TCK), Technological Pedagogical Knowledge (TPK), and Technological Pedagogical Content Knowledge (TPACK).

Effective technology integration for pedagogy around specific subject matter requires developing sensitivity to the dynamic, transactional relationship between these components of knowledge situated in unique contexts. Individual teachers, grade-level, school-specific factors, demographics, culture, and other factors ensure that every situation is unique, and no single combination of content, technology, and pedagogy will apply for every teacher, every course, or every view of teaching.

  • Content Knowledge (CK) – “Teachers’ knowledge about the subject matter to be learned or taught. The content to be covered in middle school science or history is different from the content to be covered in an undergraduate course on art appreciation or a graduate seminar on astrophysics… As Shulman (1986) noted, this knowledge would include knowledge of concepts, theories, ideas, organizational frameworks, knowledge of evidence and proof, as well as established practices and approaches toward developing such knowledge” (Koehler & Mishra, 2009).

  • Pedagogical Knowledge (PK) – “Teachers’ deep knowledge about the processes and practices or methods of teaching and learning. They encompass, among other things, overall educational purposes, values, and aims. This generic form of knowledge applies to understanding how students learn, general classroom management skills, lesson planning, and student assessment.” (Koehler & Mishra, 2009).

  • Technology Knowledge (TK) – Knowledge about certain ways of thinking about, and working with technology, tools and resources. and working with technology can apply to all technology tools and resources. This includes understanding information technology broadly enough to apply it productively at work and in everyday life, being able to recognize when information technology can assist or impede the achievement of a goal, and being able continually adapt to changes in information technology (Koehler & Mishra, 2009).

  • Pedagogical Content Knowledge (PCK) – “Consistent with and similar to Shulman’s idea of knowledge of pedagogy that is applicable to the teaching of specific content. Central to Shulman’s conceptualization of PCK is the notion of the transformation of the subject matter for teaching. Specifically, according to Shulman (1986), this transformation occurs as the teacher interprets the subject matter, finds multiple ways to represent it, and adapts and tailors the instructional materials to alternative conceptions and students’ prior knowledge. PCK covers the core business of teaching, learning, curriculum, assessment and reporting, such as the conditions that promote learning and the links among curriculum, assessment, and pedagogy” (Koehler & Mishra, 2009).

  • Technological Content Knowledge (TCK) – “An understanding of the manner in which technology and content influence and constrain one another. Teachers need to master more than the subject matter they teach; they must also have a deep understanding of the manner in which the subject matter (or the kinds of representations that can be constructed) can be changed by the application of particular technologies. Teachers need to understand which specific technologies are best suited for addressing subject-matter learning in their domains and how the content dictates or perhaps even changes the technology—or vice versa” (Koehler & Mishra, 2009).

  • Technological Pedagogical Knowledge (TPK) – “An understanding of how teaching and learning can change when particular technologies are used in particular ways. This includes knowing the pedagogical affordances and constraints of a range of technological tools as they relate to disciplinarily and developmentally appropriate pedagogical designs and strategies” (Koehler & Mishra, 2009).

  • Technological Pedagogical Content Knowledge (TPACK) – “Underlying truly meaningful and deeply skilled teaching with technology, TPACK is different from knowledge of all three concepts individually. Instead, TPACK is the basis of effective teaching with technology, requiring an understanding of the representation of concepts using technologies; pedagogical techniques that use technologies in constructive ways to teach content; knowledge of what makes concepts difficult or easy to learn and how technology can help redress some of the problems that students face; knowledge of students’ prior knowledge and theories of epistemology; and knowledge of how technologies can be used to build on existing knowledge to develop new epistemologies or strengthen old ones” (Koehler & Mishra, 2009).

(Content available at



get updates